10% Chemical Energetics Session 2

Migma Tshering

Learning Objectives

Enthalpy (H)

- Definition
- Change in Enthalpy
- Energy Diagram

Definition

Enthalpy (H)

Energy that can be converted to heat

H_R & H_P

Enthalpy (H)

$$A + B \longrightarrow C + D$$

Reactants

Products

H_R

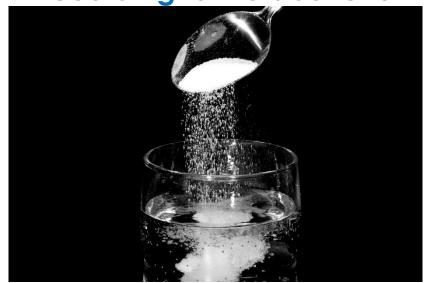
Enthalpy of the Reactants

HP

Enthalpy of the Products

$$\Delta H = H_P - H_R$$

_ Enthalpy of Reactants


$$\Delta H = H_P - H_R$$

Example:

$$NaCl_{(s)} + Water \longrightarrow NaCl_{(aq)} \Delta H=+1.2 \text{ k.cal}$$
 $H_R= Less$
 $H_P= More$

Energy is absorbed

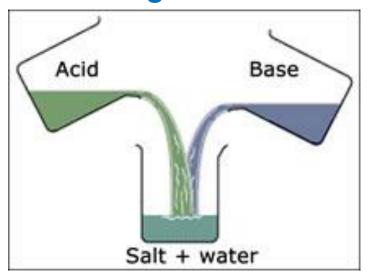
According to the above formula,

$$\Delta H = H_P - H_R$$

$$\Delta H = More - Less$$

$$\Delta H = POSITIVE$$

$$\Delta H = Positive$$
 $H_P > H_R$


$$\Delta H = H_P - H_R$$

Example:

HCI + NaOH
$$\longrightarrow$$
 NaCl + H₂O \triangle H=-13.7 k.cal
H_P= More H_P = Less Energy is released

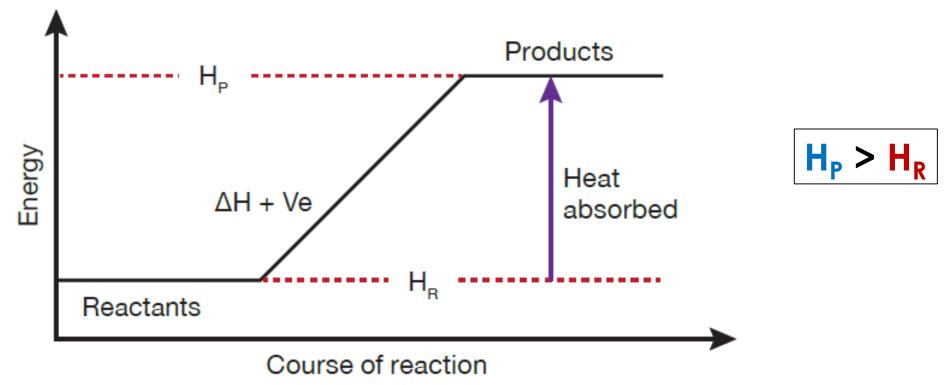
Energy is released

According to the above formula,

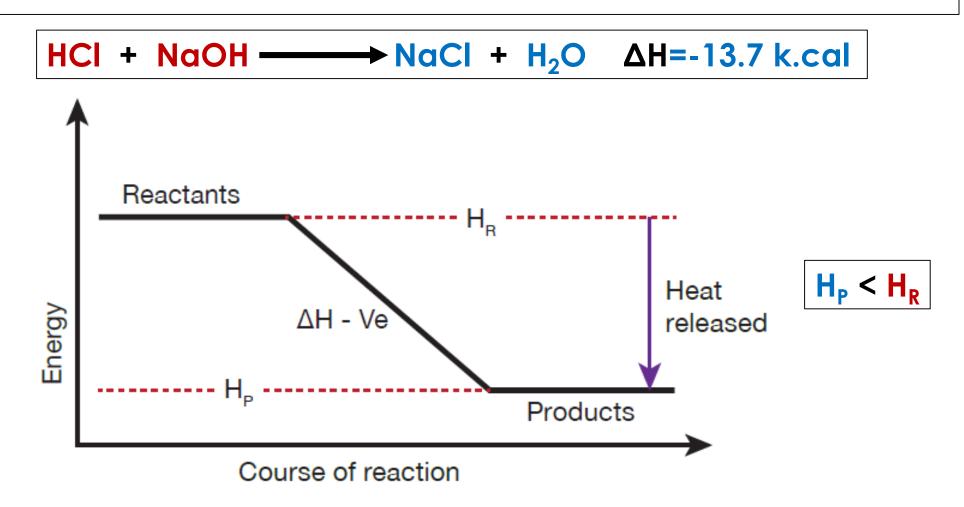
$$\Delta H = H_P - H_R$$
 $\Delta H = Less - More$
 $\Delta H = NEGATIVE$

$$\Delta H = Negative$$
 $H_P < H_R$

Endothermic Reaction


$$\Delta H = Positive$$
 $H_P > H_R$

Exothermic Reaction


$$\Delta H = Negative$$
 $H_P < H_R$

Endothermic Reaction ($\Delta H=$ Positive)

$$NaCl_{(s)} + Water \longrightarrow NaCl_{(aq)} \Delta H = +1.2 k.cal$$

Exothermic Reaction ($\Delta H = Negative$)

Activity

Q1.

Study the given thermochemical equation and identify the type of reaction.

$$A + B \rightarrow C + D$$
 $\Delta H = 728kJ/mol$

- A. Endothermic reaction
- B. Irreversible reaction
- C. Exothermic reaction
- D. Reversible reaction

Q2. What does the negative value of ΔH indicate in chemical reaction?

- A. release of heat energy
- B. absorption of heat energy
- C. zero absorption of heat energy
- D. zero release of heat energy

A Chemistry teacher asked one of the students to dissolve sodium hydroxide pallets in cold water.

In due course of stirring the mixture, the student felt the production of heat.

What can you conclude from the above experiment?

A. It is due to heat of neutralization

Q3.

- B. It is due to endothermic reaction
- C. It is due to exothermic reaction
- D. It is due to stirring of the mixture

Answer

- Q1. A. Endothermic reaction
- Q2. A. release of heat energy
- Q3. C. It is due to exothermic reaction

Learning Objectives

Enthalpy (H)

- Definition
- Change in Enthalpy
- Energy Diagram