10% Chemical Energetics Session 1

Migma Tshering

Learning Objectives

- Internal Energy (E)
- Enthalpy (H)
 - Definition

Introduction

Energy is <u>needed</u>

to **BREAK** a chemical bond.

Introduction

Energy is released

when a bond is FORMED.

Introduction

All the chemical reactions are accompanied

by <u>energy change</u>

Internal Energy (E)
Helps Explains Energy
Enthalpy (H)

Chemical Equation

$A + B \longrightarrow C + D$

Reactants Products

Internal Energy (E)

• The energy stored in a substance.

Internal Energy (E)

Change in Internal Energy (ΔE)

$$\Delta E = E_P - E_R$$

Change in Internal Energy = Internal Energy of Products of Reactants

Change in Internal Energy (ΔE)

 $\Delta E = E_{P} - E_{R}$

Example:

Energy is absorbed

According to the above formula,

- $\Delta E = E_P E_R$
- $\Delta E = 100 50$
- $\Delta E = 50 \text{ or } +50$
- $\Delta E = POSITIVE$

Change in Internal Energy (ΔE)

$$\Delta E = E_P - E_R$$

Example:

According to the above formula,

$$\Delta E = E_P - E_R$$
$$\Delta E = 100 - 150$$
$$\Delta E = -50$$

 $\Delta E = NEGATIVE$

$$\Delta E = Negative$$
$$E_P < E_R$$

Change in Internal Energy (ΔE)

Endothermic Reaction

 $\Delta E = Positive$ $E_P > E_R$

Exothermic Reaction

 $\Delta E = Negative$ $E_P < E_R$

Enthalpy (H): Energy that can be converted to heat